Decentralized Systems Engineering

CS-438 - Fall 2024

DEDIS

Bryan Ford, Pierluca Borsò-Tan

Your Lecturers

Prof. Bryan Ford

Pierluca Borsò-Tan

What are Distributed and Decentralized Systems?

Distributed system:

a system of multiple computers (nodes) communicating over a network to achieve a common goal.

Decentralized system:

a distributed system without a single point of control or authority.

different nodes or subsets of the network may be owned or controlled by different people, organizations or interests.

Some examples

- Centralized distributed systems
 - Google
 - Netflix
 - Facebook
 - WeChat
- Decentralized distributed systems
 - "The Internet"
 - E-mail
 - Usenet
 - BitTorrent

- o Bitcoin, Ethereum
- Avionics, control systems
- E-Voting
- o Tor, I2P

Course Goals

- Understand the fundamental and practical challenges inherent in designing and building decentralized systems.
- Get a feel for the (limited) body of techniques and solutions
- Examine a number of real systems, past and present: how they work, and why they succeeded ...or failed
- Become better engineers: solidify this knowledge by applying it!
 - → Build a small, but working, usable and robust, decentralized system

Why Study Decentralized Systems?

- Devise solutions when there is no common authority everyone trusts
- Add new tools to your engineering toolbox
- Learn to think and question your assumptions
- The world is full of decentralized systems

Course Organization

Course Organization

Lecturers: Prof. Bryan Ford, Pierluca Borsò-Tan

TAs: Pasindu Tennage, Charly Castes, Tao Lyu

AEs: Derya Cogendez, Kilian Lauener, Mariem Baccari

E-mail: <u>cs438@groupes.epfl.ch</u>

Material: Moodle (lectures, readings, announcements, Q&A, etc.)

https://go.epfl.ch/CS-438

Assessment: 40% homework 30% project 30% written exam (MCQ)

Class participation is not graded, but fundamental to success!

Weekly workload

Lectures: Monday 10:15-12:00 (INF1)

+ Sep. 13, this Friday ! 15:15-17:00 (CM1 3)

Q&A w/ TAs:

Friday 15:15-17:00 (INJ218)

- Help understanding concepts, homework requirements & architecting

- The TAs will not debug your code for you!

Self-guided:

Monday 13:15-15:00 (INM200)

- Room open to hack, discuss design/problems, and test with classmates!

Homework:

8-12h depending on your understanding & development skills

No sharing or copying code; everyone implements their own Peerster!

Course Syllabus

Week	Content	
1	Course intro UseNet and gossip	
2	Jeûne fédéral exercise session only	
3	Flooding search and routing	Foundations for
4	Structured search and compact routing	Decentralization
5	Distributed storage	
6	Replication and consensus	
7	Threat modeling and threshold crypto	
8	Anonymous communication	Attacks & Defenses
9	Sybil attacks and defenses	
10	Blockchains and cryptocurrencies	
11	Smart contracts	Blockchains
12	Advanced blockchain architectures	
13	Testing & chaos engineering	Engineering
14	Decentralized democracy	E-Voting

Homework & Project

Build a decentralized system

Individually:

- Network layer (introduction to Go)
- Gossiping
- File sharing
- Consensus & blockchain

In groups of ~3 students:

- One of many predefined projects,
- ... or your own!

Course Syllabus

Homework & Project Schedule

Week	Content	HW0	HW1	HW2	HW3	Project
1	Course intro UseNet and gossip	Sep 9>				
2	Jeûne fédéral exercise session only	Motwork				
3	Flooding search and routing	Network	Sep 27 >			
4	Structured search and compact routing	> Oct 1	Coopining			
5	Distributed storage		Gossiping	Oct 11 >		
6	Replication and consensus		> Oct 15	File		
7	Threat modeling and threshold crypto			Sharing	Nov 1 >	_
8	Anonymous communication			> Nov 5	Consensus	
9	Sybil attacks and defenses				&	
10	Blockchains and cryptocurrencies				Blockchain	
11	Smart contracts				> Nov 24	Nov 25 >
12	Advanced blockchain architectures					Volum Droject
13	Testing & chaos engineering					Your Project
14	Decentralized democracy					> Dec 20

Homework: Your Path to Success!

- They build on top of each other
 - Don't skip!
 - Improving previous HW is rewarded
- Defensive programming
- Manage your time
 - Don't wait for the last minute you will fail!
 - How much is that perfect score worth to you?

Homework Assessment (40%)

	Code Quality	HW0	HW1	HW2	HW3	Total grade
HW0 due	1%	3%				4%
HW1 due	1%	1%	9%			11%
HW2 due	1%	1%	9%	14%		25%
HW3 due	4%	1%	11%	15%	29%	60%
Total	7%	6%	29%	29%	29%	100%

You can talk with each other and exchange ideas, not share code
 Plagiarism will be checked for and dealt with severely

Homework Assessment (40%)

Public tests (90%):

		Unit tests	55%
--	--	------------	-----

• Integration tests 30%

Performance (benchmarks) 5%

Hidden tests (10%):

Verify robustness / defensive programming

Project: Organization

- Group Project (~3 members)
 - Build on top of (some part of) Peerster
- Guided topic selection, with clear goals
 ... or you can be creative!
- Example project topics
 - Secure routing
 - Anonymous reputation
 - E-Voting
 - CRDTs

Project: Organization (cont'd)

- Regular meetings with TAs (week 11+)
- Final project report (December 20)

(More detailed information will follow later in the semester)

Project Assessment (30%)

- Group grade (50%)
 - Report
 - Project quality
 - Goals achieved
- Individual grade (50%)
 - Contribution to the project
 - (1 page) individual report
- No winners in a losing team !

Final Exam (30%)

- Format: multiple-choice questions
- Assessment of:
 - your understanding of fundamental concepts
 - your ability to reason about decentralized systems
 - your ability to engineer such systems (design, evaluate, test, make trade-offs)
- Non-goal:
 - You learning the slides by heart it won't help.

Support structure

Questions?

Lecturer: Bryan Ford, Pierluca Borsò-Tan

TAs: Pasindu Tennage, Charly Castes, Tao Lyu

AEs: Derya Cogendez, Kilian Lauener, Mariem Baccari

E-mail: <u>cs438@groupes.epfl.ch</u>

Questions: Exercise sessions (Fridays)

Moodle forums & FAQs

Engineering Week 3: Go thinking & best practices

Classes: Week 13: testing & chaos engineering

Decentralized Systems Engineering

CS-438 - Fall 2024

DEDIS

Bryan Ford, Pierluca Borsò-Tan

Why Build a Decentralized System?

- Sometimes a basic requirement
- Availability, reliability and safety
- Lower resource usage (in specific scenarios)
- Enabler for resilient ecosystems
- Nature has shown they can work incredibly well!

Major Topics & Applications

- Communication: messaging, chat, voice/video
- Data: storing, sharing, searching and mining
- Collaboration mechanisms
- Social networking
- Deliberation, e-voting, reputation
- Blockchains, cryptocurrencies, and smart contract systems

Related, but (mostly) out of scope in this class:

- Decentralized control systems, industrial automation
- Intelligent agents, self-organizing robotics
- Military & civilian ad-hoc networks (MANET, VANET, FANET, etc.)

Recurrent Issues and Themes

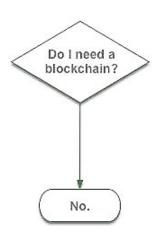
- Identity (real, sybil) versus location
- Information integrity and privacy
- Behavior accountability
- Denial-of-service
- Protocol efficiency, in the normal case and under load or attack

Why might we prefer centralized systems?

Let's think!

- ~ 2 min, write down your ideas
- ~ 1 min, discuss with your neighbor

Then share with the class!


Why might we prefer centralized systems?

Simplicity:

- Engineering
- Management
- Security model
- Version management

Thereof:

- Performance / Efficiency
- Cost

Decentralized Communication

An introduction

Communicating with a (known) peer

- Same machine
 a file in a shared directory
- Local networking shared drive, file transfer
- Global networking, centralized trust a file on a shared server (FTP? Dropbox?)
- Decentralized

 e-mail (signed, encrypted)

or write command on UNIX/Linux

Communicating with (many, unknown) peers

- Same machine
 a file in a shared directory, or Linux wall command
- Local networking shared drive, intranet website
- Global networking, centralized trust mailing lists, forums, Reddit, ...
- Decentralized
 ??? → next week's lecture

Communicating with (many, unknown) peers

Decentralized

??? → this Friday's lecture

Many open questions:

- How do we reach unknown peers?
- How do they find out about us / our node?
- How do we eventually reach every peer?
- How can we communicate reliably ?
 - Are they online ?
 - Is the network « stable » ?